skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Johnson, R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Greenland stadials and interstadials (GS/GI) were millennial climate oscillations during the last glacial period that were originally identified in Greenland ice cores but that have been correlated with environmental change around much of the globe, including in monsoon regimes, with enhanced monsoon rainfall coincident with North Atlantic warming. Hydroclimate variability associated with GS/GI have been investigated in detail using terrestrial (primarily oxygen isotopes in stalagmites) and marine records, particularly for the Southeast Asian monsoon. However, a considerably smaller number of terrestrial records preserve these events in the Indian summer monsoon (ISM), the primary water source for ~2 billion people across South Asia. Here we present the first glacial-age speleothem stable isotope time series from Nepal, located in the ISM regime. UK-1 is a 187 mm tall aragonite stalagmite from the Pokhara Valley of central Nepal, ~150 km west of Kathmandu. The chronology of UK-1, which was established by 8 U/Th dates, all of which fall in stratigraphic order (within the errors), reveals continuous growth from 34,350-31,500 yr BP (Marine Isotope Stage 3); age uncertainties average ±84 yr. Stable isotope samples were measured every 1 mm, corresponding to a temporal resolution of 18 yr. Oxygen isotope ratios range from -5.6‰ to -7.6‰, and share the same timing and structure as Greenland (inter)stadials GS/GI 6 and 5.2 in the NGRIP record. We interpret this as reflecting an amount effect response to a strengthened ISM driven by more (less) poleward migration of the intertropical convergence zone during periods of northern hemisphere warming (cooling). This clear millennial signal in UK-1 is a somewhat unexpected result given that amount effects in oxygen isotopes in precipitation are weak (R^2=0.1) in this area today. UK-1 carbon isotope ratios range from -3‰ to -6‰ (excluding a small number of negative spikes) and exhibit variability coarsely similar to the NGRIP record, with lower (higher) values generally corresponding to GI (GS), possibly due to prior calcite precipitation in voids above the cave concomitant with changes in precipitation. Some periods of antiphasing between carbon and oxygen are also apparent and may reflect flushing of soil carbon dioxide during particularly wet phases. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  2. Free, publicly-accessible full text available February 20, 2026
  3. Free, publicly-accessible full text available January 28, 2026
  4. Materials composed of spin-1 antiferromagnetic (AFM) chains are known to adopt complex ground states that are sensitive to the single-ion-anisotropy (SIA) energy ( D ), and intrachain ( J 0 ) and interchain ( J 1 , 2 ) exchange energy scales. While theoretical and experimental studies have extended this model to include various other energy scales, the effect of the lack of a common SIA axis is not well explored. Here we investigate the magnetic properties of Ni ( pyrimidine ) ( H 2 O ) 2 ( NO 3 ) 2 , a chain compound where the tilting of Ni octahedra leads to a twofold alternation of the easy-axis directions along the chain. Muon-spin relaxation measurements indicate a transition to long-range order at T N = 2.3 K and the magnetic structure is initially determined to be antiferromagnetic and collinear using elastic neutron diffraction experiments. Inelastic neutron scattering measurements were used to find J 0 = 5.107 ( 7 ) K ,   D = 2.79 ( 1 ) K , J 1 = 0.00 ( 5 ) K ,   J 2 = 0.18 ( 3 ) K , and a rhombic anisotropy energy E = 0.19 ( 9 ) K . Mean-field modeling reveals that the ground state structure hosts spin canting of ϕ 6 . 5 , which is not detectable above the noise floor of the elastic neutron diffraction data. Monte Carlo simulation of the powder-averaged magnetization, M ( H ) , is then used to confirm these Hamiltonian parameters, while single-crystal M ( H ) simulations provide insight into features observed in the data. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  5. We investigate the magnetic properties of S = 1 antiferromagnetic diamond-lattice, Ni X 2 ( pyrimidine ) 2 ( X = Cl ,   Br ) , hosting a single-ion anisotropy (SIA) orientation which alternates between neighboring sites. Through neutron diffraction measurements of the X = Cl compound, the ordered state spins are found to align collinearly along a pseudo-easy axis, a unique direction created by the intersection of two easy planes. Similarities in the magnetization, exhibiting spin-flop transitions, and the magnetic susceptibility in the two compounds imply that the same magnetic structure and a pseudo-easy axis is also present for X = Br . We estimate the Hamiltonian parameters by combining analytical calculations and Monte Carlo (MC) simulations of the spin-flop and saturation field. The MC simulations also reveal that the spin-flop transition occurs when the applied field is parallel to the pseudo-easy axis. Contrary to conventional easy-axis systems, there exist field directions perpendicular to the pseudo-easy axis for which the magnetic saturation is approached asymptotically and no symmetry-breaking phase transition is observed at finite fields. Published by the American Physical Society2024 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  6. null (Ed.)
    Studies have shown that in the U.S., Black, Hispanic, and women entrepreneurs are given a tiny fraction of venture capital funding, which is vastly disproportionate to their representation in the population. This investment discrepancy is not only socially unjust, but it also deprives the U.S. of the advantages in innovation and global competitiveness that could stem from increasing the participation of these groups in innovative sectors. This is particularly true within transdisciplinary startups, including those focused on smart energy, biomedical, and nanomedical technologies, all of which require cross-disciplinary experts. Every new enterprise in these fields experiences challenges in finding adequate support. These challenges exist at a time in the 21st century when U.S. innovation is facing unprecedented pressures in competition for primacy. In 1960, U.S. R&D expenditure for defense and private industries was approximately 69 percent of global spending on R&D [1]; whereas in 2016, the U.S. share of global R&D expenditure had decreased to just 28 percent [2], due to China’s substantial advances in R&D. If this trend continues, both China’s GDP and R&D expenditure measured by GDP will outperform those of the U.S. by 2030 [3]. To ensure that the U.S. remains a world leader in R&D, the National Science Foundation (NSF) launched the Innovative Postdoctoral Entrepreneurial Research Fellowship (I-PERF) program. I-PERF facilitates the professional development of Black, Hispanic and female research fellows, who are typically underrepresented within STEM fields, by offering them invaluable experience within research and technology companies. The program’s goal is to enhance diversity in the startup and entrepreneurial landscapes, improve opportunities for researchers from underserved groups, and increase the number of highly competent entrepreneurs within the U.S. STEM community. The startup companies involved in the program, which are also supported by the NSF, comprise a variety of new, mixed STEM fields that were unknown just a few decades ago. 
    more » « less